Click authors' names to visit corresponding PubMed pages.
Last update: Dec. 23, 2020
Kokaji T, Hatano A, Ito Y, Yugi K, Eto M, Morita K, Ohno S, Fujii M, Hironaka K, Egami R, Terakawa A, Tsuchiya T, Ozaki H, Inoue H, Uda S, Kubota H, Suzuki Y, Ikeda K, Arita M, Matsumoto M, Nakayama KI, Hirayama A, Soga T, and Kuroda S.
Transomics analysis reveals allosteric and gene regulation axes for altered hepatic glucose-responsive metabolism in obesity.
Sci. Signal., 13(660): eaaz1236, 2020.

Wada T, Hironaka K, Wataya M, Fujii M, Eto M, Uda S, Hoshino D, Kunida K, Inoue H, Kubota H, Takizawa T, Karasawa Y, Nakatomi H, Saito N, Hamaguchi H, Furuichi Y, Manabe Y, Fujii NL, and Kuroda S.
Single-Cell Information Analysis Reveals That Skeletal Muscles Incorporate Cell-to-Cell Variability as Information Not Noise.
Cell Rep., 32(9): 108051, 2020.
Uda S., and Kubota H.
Sparse Gaussian graphical model with missing values.
Proceedings of the 21st Conference of Open Innovations Association, FRUCT 2017, Vol. Part F134240: 336-343, 2018.

Kawata K., Yugi K., Hatano A., Kokaji T., Tomizawa Y., Fujii M., Uda S., Kubota H., Matsumoto M., Nakayama K. I., and Kuroda S.
Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
Genes Cells., 00: 1-12, 2018.

Kawata K., Hatano A., Yugi K., Kubota H., Sano T., Fujii M., Tomizawa Y., Kokaji T., Tanaka K. Y., Uda S., Suzuki Y., Matsumoto M., Nakayama K. I., Saitoh K., Kato K., Ueno A., Ohishi M., Hirayama A., Soga T., and Kuroda S.
Trans-omic analysis reveals selective responses to induced and basal insulin across signaling, transcriptional, and metabolic networks.
iScience, 7: 212-229, 2018.

Kubota H., Uda S., Matsuzaki F., Yamauchi Y., and Kuroda S.
In vivo
decoding mechanisms of the temporal patterns of blood insulin by the insulin-AKT pathway in the liver.
Cell Syst., 7: 1-11, 2018.

Ohashi K., Fujii M., Uda S., Kubota H., Komada H., Sakaguchi K., Ogawa W., and Kuroda S.
Increase in hepatic and decrease in peripheral insulin clearance characterize abnormal temporal patterns of serum insulin in diabetic subjects.
NPJ Syst Biol Appl., 4: 14, 2018.
Tsuchiya T., Fujii M., Matsuda N., Kunida K., Uda S., Kubota H., Konishi K., and Kuroda S.
System identification of signaling dependent gene expression with different time-scale data.
PLoS Comput. Biol., 13(12): e1005913, 2017.
Sano T., Kawata K., Ohno S., Yugi K., Kakuda H., Kubota H., Uda S., Fujii M., Kunida K., Hoshino D., Hatano A., Ito Y., Sato M., Suzuki Y., and Kuroda S.
Selective control of up-regulated and down-regulated genes by temporal patterns and doses of insulin.
Sci. Signal., 9(455): ra112, 2016.

Yugi K., Kubota H., Hatano A., and Kuroda S.
Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple 'Omic' Layers.
Trends Biotechnol., 34(4): 276-90, 2016.

Fukuda S., Nishida-Fukuda H., Nanba D., Nakashiro K., Nakayama H., Kubota H., and Higashiyama S.
Reversible interconversion and maintenance of mammary epithelial cell characteristics by the ligand-regulated EGFR system.
Sci. Rep., 6: 20209, 2016.
Katsura Y., Kubota H., Kunida K., Kuroda S., and Ozawa T.
An optogenetic system for interrogating the temporal dynamics of Akt.
Sci. Rep., 5: 14589, 2015.

Ohashi K., Komada H., Uda S., Kubota H., Iwaki T., Fukuzawa H., Komori Y., Fujii M., Toyoshima Y., Sakaguchi K., Ogawa W., and Kuroda S.
Glucose Homeostatic Law: Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans.
PLoS ONE, 10(12): e0143880, 2015.
Noguchi R., Kubota H., Yugi K., Toyoshima Y., Komori Y., Soga T., and Kuroda S.
The Selective Control of Glycolysis, Gluconeogenesis and Glycogenesis by Temporal Insulin Patterns.
Mol. Syst. Biol., 9: 664, 2013.

Uda S., Saito T., Kudo T., Kokaji T., Tsuchiya T., Kubota, H., Komori Y., Ozaki Y., and Kuroda, S.
Robustness and compensation of information transmission of signaling pathways.
Science, 34(6145): 558-61, 2013.

Akimoto Y., Yugi K., Uda S., Komori Y., Kubota H., and Kuroda S.
The extraction of simple relationships in growth factor-specific multiple-input and multipleoutput systems in cell-fate decisions by backward elimination PLS regression.
PLoS ONE, 8(9): e72780, 2013.

Kubota H., and Kuroda S.
Temporal Coding of Signaling Pathway.
生物物理, 53(4): 184-189, 2013.
Kubota H., Noguchi R., Toyoshima Y., Ozaki Y., Uda S., Watanabe K., Ogawa W., and Kuroda S.
Temporal Coding of Insulin Action through Multiplexing of the AKT Pathway.
Mol. Cell, 46: 820-32, 2012.
Fujita K., Toyoshima Y., Uda S., Ozaki Y., Kubota H., and Kuroda S.
Decoupling of Receptor and Downstream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics.
Sci. Signal., 3 (132): ra56, 2010.

Ozaki Y., Uda S., Saito T., Chung J., Kubota H., and Kuroda, S.
A quantitative image cytometry technique for time series or population analyses of signaling networks.
PLoS ONE, 5(4): e9955, 2010.

Chung J., Kubota H., Ozaki Y., Uda S., and Kuroda, S.
Timing-Dependent Actions of NGF Required for Cell Differentiation.
PLoS ONE, 5(2): e9011, 2010.

Matsuo R., Kubota H., Obata T., Kito K., Ota K., Kitazono T., Ibayashi S., Sasaki T., Iida M., and Ito T.
The yeast eIF4E-associated protein Eap1p attenuates GCN4 translation upon TOR inactivation.
FEBS Lett., 579: 2433-2438, 2005.

Ichimura T., Kubota H., Goma T., Mizushima N., Ohsumi Y., Iwago M., Kakiuchi K., Shekhar H. U., Shinkawa T., Taoka M, Ito T., and Isobe T.
Transcriptomic and proteomic analysis of a 14-3-3 gene-deficient yeast.
Biochemistry, 43: 6149-6158, 2004.

Kubota H., Obata T., Ota K., Sasaki T., and Ito T.
Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2α kinase GCN2.
J. Biol. Chem., 278: 20457-20460, 2003.

Ito T., Ota K., Kubota H., Yamaguchi Y., Chiba T., Sakuraba K., and Yoshida M.
Roles for the two-hybrid system in exploration of the yeast protein interactome.
Mol. Cell. Proteomics, 1: 561-566, 2002.

Kubota H., Ota K., Sakaki Y., and Ito T.
Budding yeast GCN1 binds the GI domain to activate the eIF2α kinase GCN2.
J. Biol. Chem., 276: 217591-17596, 2001.

Kubota H., Sakaki Y., and Ito T.
GI domain-mediated association of the eukaryotic initiation factor 2α kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast.
J. Biol. Chem., 275: 20243-20246, 2000.

*Only the books written in English are shown here. For Japanese ones, please check here.

Hiroyuki, K. and Kuroda, S.
Temporal Coding of Insulin Signaling
Protein modification in pathogenic dysregulation of signaling (Springer), 95-109, 2015.