FosB is essential for the enhancement of stress tolerance and antagonizes locomotor sensitization by ΔFosB

Yusaku Nakabeppu
Biological Psychiatry, June 2011

Abstract

BACKGROUND:
Molecular mechanisms underlying stress tolerance and vulnerability are incompletely understood. The fosB gene is an attractive candidate for regulating stress responses, because ΔFosB, an alternative splice product of the fosB gene, accumulates after repeated stress or antidepressant treatments. On the other hand, FosB, the other alternative splice product of the fosB gene, expresses more transiently than ΔFosB but exerts higher transcriptional activity. However, the functional differences of these two fosB products remain unclear.

METHODS:
We established various mouse lines carrying three different types of fosB allele, wild-type (fosB(+)), fosB-null (fosB(G)), and fosB(d) allele, which encodes ΔFosB but not FosB, and analyzed them in stress-related behavioral tests.

RESULTS:
Because fosB(+/d) mice show enhanced ΔFosB levels in the presence of FosB and fosB(d/d) mice show more enhanced ΔFosB levels in the absence of FosB, the function of FosB can be inferred from differences observed between these lines. The fosB(+/d) and fosB(d/d) mice showed antidepressive-like behaviors and increased E-cadherin expression in striatum compared with wild-type mice. In contrast, fosB-null mice showed increased depression-like behavior and lower E-cadherin expression.

CONCLUSIONS:
These findings indicate that FosB is essential for stress tolerance mediated by ΔFosB. These data suggest that fosB gene products have a potential to regulate mood disorder-related behaviors.

Additional Information:

Epilepsy and depression show a high rate of comorbidity, making accurate diagnosis and resulting treatment of the conditions problematic. Therefore an increased understanding of the genetic and molecular basis for this comorbidity is of great value to the diagnosis and therapy of both disorders. Evidence suggests that adult hippocampal neurogenesis is associated with both depression and epilepsy. We reported that fosB-null mice exhibit depressive-like behaviors in the paper published in *Biological Psychiatry* 70(5):487-495, 2011. However, it has not yet been determined if the fosB gene also plays a role in epilepsy with depression, and/or adult hippocampal neurogenesis.

We have demonstrated that fosB products are expressed in neural progenitors of the dentate gyrus, as well as mature hippocampal neurons (1, 2), and that fosB-null mice display spontaneous epilepsy and impaired neurogenesis in the adult hippocampus (2). Moreover, microarray analysis shows that genes related to neurogenesis, depression and epilepsy are altered in the hippocampus of fosB-null mice (2). Thus, the fosB-null mouse is the first animal model to provide insight into the genetic and molecular basis of the comorbidity between depression and epilepsy with abnormal neurogenesis, all of which are caused by loss of a single gene, fosB. It will be important to determine if alterations in the fosB gene, or its expression, are associated with these disorders in humans. Consequently, fosB alterations may prove to be important for the diagnosis and therapy of these complicated disorders.

References


Comparison of Saliva Collection Methods in Children with High-Functioning Autism Spectrum Disorders: Acceptability and Recovery of Cortisol

Susan K. Putnam, Christopher Lopata, Jeffery D. Fox, Marcus L. Thomeer, Jonathan D. Rodgers, Martin A. Volker, Gloria K. Lee, Erik G. Neilans, Jilynn Werth

The interaction between expected values and risk levels in a modified Iowa gambling task

Nai-Shing Yen, I-Chen Chou, Hui-Kuan Chung, Kuan-Hua Chen
Biological Psychology Volume 91, Issue 2, October 2012, Pages 232–237

Abstract
Performance on the Iowa gambling task (IGT) supports somatic marker hypothesis (SMH), which proposes that the process of decision …

Working memory training does not improve intelligence in healthy young adults

Weng-Tink Chooia, Lee A. Thompson
Intelligence Volume 40, Issue 6, November–December 2012, Pages 531–542
Abstract
Jaeggi and her colleagues claimed that they were able to improve fluid intelligence by training working memory. Subjects who trained their working memory …

Recent Posts

- Characterisation of chocolate eating behaviour
- A Functional Variant of the Serotonin Transporter Gene (SLC6A4) Moderates Impulsive Choice in Attention-Deficit/Hyperactivity Disorder
Boys and Siblings
- Global sleep quality as a moderator of alcohol consumption and consequences in college students
- A Chinese Chan-based mind-body intervention for patients with depression
- Night eating patterns and chronotypes: a correlation with binge eating behaviors

Sections
- Behavioural Studies
- Clinical Trials
- Events
- Key Research Articles
- Neuroscience Breakthroughs
- Pages
- Psychologist Profile
- Top Cognitive Studies

About Psychology Progress
Psychology Progress is a Canadian establishment founded in 2011. The senior management team have extensive backgrounds in top academic institutions and in the Psychiatric field.

Psychology Progress